Hybridizing Particle Swarm Optimization with Signal-to-Noise Ratio for numerical optimization
نویسندگان
چکیده
This paper hybridized the Particle Swarm Optimization (PSO) with Signal-to-Noise Ratio (SNR) to solve the numerical optimization problems. PSO has the ability of both global and local searches, where improper parameter settings could cause the algorithm to converge at the local optimum. SNR, on the other hand, has the ability to evaluate ‘‘existence possibility of optimal value’’. Integration of PSO and SNR thus becomes more robust, statistically sound and efficient than PSO. In this paper, fifteen standard test functions (benchmark problems) with a large number of local optimal solutions and high dimension (30 or 100 dimension) are used for examples and solved by the proposed algorithm. The results show that the proposed algorithm by this study can effectively obtain the global optimal solutions or close-to-optimal solutions. Crown Copyright 2011 Published by Elsevier Ltd. All rights reserved.
منابع مشابه
Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملTraffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization
Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...
متن کاملA New Shuffled Sub-swarm Particle Swarm Optimization Algorithm for Speech Enhancement
In this paper, we propose a novel algorithm to enhance the noisy speech in the framework of dual-channel speech enhancement. The new method is a hybrid optimization algorithm, which employs the combination of the conventional θ-PSO and the shuffled sub-swarms particle optimization (SSPSO) technique. It is known that the θ-PSO algorithm has better optimization performance than standard PSO al...
متن کاملParticle Swarm Optimization in WDM/OCDM Networks with Physical Impairments
In this paper, optimization procedures based on particle swarm optimization (PSO) are investigated, aiming to efficiently solve the optimal resource allocation for signal-to-noise plus interference ratio (SNIR) optimization of optical code paths (OCPs) from wavelength division multiplexing/optical code division multiplexing (WDM/OCDM) considering imperfections on physical layer. The characteris...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Expert Syst. Appl.
دوره 38 شماره
صفحات -
تاریخ انتشار 2011